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Some aspects of the calculation of nonstationary heat conduction in multilayer objects with boundary 
conditions of the third kind are considered. The homogeneous problem with inhomogeneous boundary 
conditions is solved for the one-dimensional case. The proposed solution has an explicit form and may be 
useful in numerical calculations due to the recurrence representation of the basic relations. 

Many important practical problems of calculating the temperature field in multilayer objects may be 

considered as one-dimensional. The literature contains works devoted to solving nonstationary heat conduction 

problems for a multilayer plate [1, 2] and for a three-layer cylinder [3] and to the general solution of the 
homogeneous problem in the case of a one-dimensional field [4 ]. 

The operator form of a solution cannot, unfortunately, be used in practical calculations because of technical 

difficulties associated with passing from transforms to an inverse transform. The form of a solution obtained by 

the Fourier method [4 ] is also of little use because of the difficulties involved in determining the coefficients when 

there are three and more layers in an object. Below, the general solution to the nonstationary heat conduction 

problem for multilayer objects is given which may be employed in practical calculations due to the recurrence form 

of the basic relations obtained. 
The solution of many nonstationary heat conduction problems with arbitrary initial and boundary 

conditions, is based, as a rule, on a particular solution of the homogeneous problem with inhomogeneous boundary 

conditions, which is of great interest. 

The mathematical formulation of the homogeneous problem of nonstationary heat conduction in a 

multilayer object in the case of a one-dimensional temperature field is specified by the system of differential 

equations 

OT ~ (r , 
t ) - - a N 2 T i ( r ,  t), X ~ _ l ~ r ~ x l ,  i =  1, 2 . . . . .  n, (l) 

Ot 

where Ti(r, t), ai are the temperature field and the thermal diffusivity of the i-th layer; x0, Xn are the coordinates 
of upper and lower geometric (free) surfaces of an object. 

The boundary conditions on free surfaces r = x0, Xn are determined as 

[ 1 [ ] T1 (r, t) -k hi  OTx (r, t) o?1, T~ (r, t) -k h20Tn (r, t) ---= ----- ~o2. (2)  
Or r=Xo Or r=xn 

The boundary conditions of conjugation of temperature fields at an interface of the layers are of the form 

Ti (r, t) = Ti+x (r, t) [ 

l ~,~ OTi(r, t) ~+10Ti+l(r ,  t) 
I f =  X . 

Or Or ~ Ii=l'. 2 ..... ,,-1 

where )l i is the thermal conductivity of the i-th layer. 

, (3)  
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The initial conditions in the general form are as follows: 

Ti(r,  0 ) = / t  (r), i = 1, 2, ..., n. 

A solution to the stated problem may be obtained as a sum of particular solutions: 

Tt (r, t) = q)l + r (r) + w~ (r, t), i = 1, 2 . . . .  , n, (4) 

where ~Pi(r) are functions satisfying the homogeneous differential equation for the stationary case (the Laplace 
equation), the conjugation conditions (3), and the inhomogeneous boundary conditions 

* 1~1101 (r) = O, 1~, (r) -~ h,~ = I])9. - -  (~1, (5) 
,~ (r) + hi 0-----7--- =~0 Or ~=~ 

and wi(r, t) are functions satisfying the homogeneous differential equation (1) and homogeneous boundary 
conditions with the following modified initial conditions: 

wi (r, O) = It (r) - -  ~h - -  ~ (r), i = 1, 2, ..., n. (6) 

In the general case, the functions ~Pi(r) and wi(r, t) are determined by the following expressions: 
.It * * 
*t  (r) = [ tp~--  q~d ~ [~ (r) + [3i1, i = 1, 2; . . . ,  n, (7) 

for the given class of problems, where ai, fli are calculated using the recurrence formulas 

where 

~ = - -  [~ (xo) + h ~ '  (x0)l, 

[~t - -  [x//~,t-d [~ (x3 + [~t-d - -  ~ (x3,  i = 2, 3, ..., n, 

a~ = [~ - . /~ l ! [~ (x . )  + [3. + h ~ '  (x . ) l ,  i = 1, 2 . . . .  , n, 

* 

wi(r,  t ) =  A~.,nFi.,~(~t,~r)exp[--~,,, ,a~t], i =  1, 2 . . . .  , n, (9) 
trt~0 

Bi.rt 1 

Fi.r+ (lh.mr) ----- [h 1 J_, Zh ][+Y10q.mr) + Bt.mY~ (~i.mr)], 

Yl 0s -t-- hller I 0s ,raXo) 

Bl,r,, = Y~ (~tl.mX0) + hlY2 (~l.mXo) 

Y~ (~tLmXi-1) Y; (~+-l,mxi-1) -]- Bt_i,mY~ ([xi-l,mXi-1) 

YI (~t.,,xi-1) Lt-1 Y1 (~q-a,mx~-O + Bi-l ,mY2 (~q-x.mxi-O 

Y; (~t.mxt-1) Y; (~t-l.~x~-3 + ~t-~.~Y'~ (~-1.,,:~-~) 

Y1 (~i , , .xi-1) 
X Y2 (~LmXi-1) ' i 2, 3, . . . ,  n ,  

X 

(8) 

(10) 

(11) 

(12) 

Y1 (~q-l,,~rt-1) + Bt-l.mY2 (~i-l.mXt-O 
.Zx = 1, Zi = Ya (t~t.mXi-1) + Bt.mY~ (tq.,~xi-O , i = 2, 3, ..., n, 

Ai,m = " " wt (r, 0) G (r) Fi.m (~t.mr) d Ji , 
i~ l  a t  i= l  xi.  1 

i ' 2  ~i xi *2 
Ji = '  S G(r)Fi,m(~i.mr)dr,  

at xi_ I. 

(13) 

(14) 

(15) 

824 



/xi, m = ~n ,m axann/a~, where ktn,m a r e  the eigenvalues of the problem, determined according to the equation 

Yx (~tn,rnXn) -k- h2V ~ (~tn,mxn) -t- B,~,,n [ r~ (Ix,~,mx,~) -b h~Y~ (Ix,,mx,)l, re=O, 1, ... (16) 

The weighting function G(r) and the specific form of the functions ~(r), F i ( g i r )  a r e  uniquely determined, 
depending on the chosen coordinate system, by the following expressions: 

in a rectangular coordinate system: 

G (r) ---- 1, ~ (r) = r, Y1 (~r) ~-- sin (W), Y~ (~tr) = cos (~r); 

in a cylindrical coordinate system: 

G (r) -- r, ~ (r) = In r, Y1 (t~r) = Jo (~tr), Y~ (~r) = No (~tr); 

in a spherical coordinate system: 

G (r) = r ~, ~ (r) ----- l/r, Y1 (ttr) = .  1 sin (ixr), Y~ (gr)  - -  i cos  (t~r). 
r r 

N O T A T I O N  

T(r, t), one-dimensional temperature field; t, time coordinate; r, spatial coordinate; a, thermal diffusivity; 

2, thermal conductivity. 
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